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Abstract 

Shell structures have been widely used in various engineering fields and the Finite Element Method (FEM) has 

been powerfully used for analyzing these shell structures over the past several decades. Among the various shell 

finite elements, the triangular shell finite elements are advantageous for automatic mesh generations of shell 

structures with complex shapes. Even recently a new 3-node triangular shell finite element named MITC3+ has 

been developed that gives as accurate results as the state-of-the-art 4-node quadrilateral shell finite element. The 

MITC3+ shell finite element solves the locking phenomenon very successfully and thus has an outstanding 

convergence behavior in bending-dominated problems. However, there is no difference in membrane performance 

from the 3-node triangular displacement-based shell finite element (DISP3). In this study, a new 3-node triangular 

shell finite element named MITC3+S which improves the membrane performance of the MITC3+ shell finite 

element is proposed and there are two versions. The first version of the MITC3+S shell finite element has 

contributed to the successful application of the edge-based strain smoothing technique to the continuum mechanics 

based MITC3+ shell finite element. The first version has successfully improved the membrane performance of 

the MITC3+ shell finite element. The second version of the MITC3+S shell finite element alleviates the problem 

of increasing computation time in the first version with an enhanced edge-based strain smoothing technique. The 

second version has even better membrane performance than the first version.    

 

Keywords FEM, 3-node triangular shell finite element, MITC3+ shell finite element, membrane performance, 

strain smoothing technique, MITC3+S shell finite element 
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Chapter 1.  Introduction 

 

Shell structures have been widely used in various engineering fields and Finite Element Method (FEM) 

has been powerfully used for analyzing these shell structures over the past several decades. The development of 

a shell finite element which is more reliable and accurate is very important. 

 

Shell structures are 3D structure with one dimension, the thickness, small compared to the other two 

dimensions and have a curved shape. Due to this curved shape, shell structures can effectively withstand the 

external forces. Three load-carrying mechanisms of the shell structures are bending action, membrane action and 

shearing action. As the thickness of a shell structure gets thinner, the shell structure becomes more sensitive and 

its behavior eventually converges to a specific limit state. This is called the asymptotic behaviors of the shell 

structures and categorized into membrane-dominated behavior, bending-dominated behavior and mixed behavior 

depending on shell geometry, boundary condition and loading condition [1].  

  

An ideal shell finite element should satisfy ellipticity, consistency, inf-sup and isotropy condition to 

have uniform optimal convergence regardless of the three asymptotic behaviors. The most important factor that 

interferes with the performance of the shell finite elements is the locking that the solution accuracy becomes worse 

as the shell thickness becomes thinner [2]. To alleviate the locking phenomenon, the Mixed Interpolation of 

Tensorial Components (MITC) method was developed, which was first applied to quadrilateral shell finite 

elements and later applied to triangular shell finite elements [3-5]. 

 

In general, it is recognized that triangular shell finite elements are advantageous for automatic mesh 

generations of shell structures with complex shapes but have an insufficient convergence behavior compared to 

quadrilateral shell finite elements. Therefore, some people have expressed a negative stance on the development 

of the triangular shell finite elements based on the insufficient convergence behavior of the triangular shell finite 

elements. But recently, as a result of persistent research, the 3-node triangular shell finite element named MITC3+ 

was developed that gives as accurate results as the state-of-the-art 4-node quadrilateral shell finite element [6-8].     
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 The MITC3+ shell finite element solves the locking phenomenon very successfully and thus has an 

outstanding convergence behavior in bending-dominated problems. However, there is no difference in membrane 

performance from the 3-node triangular displacement-based shell finite element (DISP3). A study to improve the 

membrane performance of the MITC3+ shell finite element is required.  

 

The purpose of this study is to improve the membrane performance of the MITC3+ shell finite element 

using the strain smoothing technique. The strain smoothing technique is a particular class of numerical methods 

for the simulation of physical phenomenon. It was first proposed to eliminate spatial instability in nodal integration 

for Galerkin mesh-free methods [9] and later expanded to the FEM. An enhanced edge-based strain smoothing 

technique has been developed and utilized in the process of the study. 

 

In chapter 2, the fundamentals related to the finite element analysis of shell structures are reviewed. The 

asymptotic behavior of shell structures, the locking behavior and its alleviation, the ideal shell finite element and 

the basic numerical tests are covered. 

 

In chapter 3, the formulations of the DISP3, MITC3 and MITC3+ shell finite elements are reviewed 

 

In chapter 4, the fundamentals related to the strain smoothing technique are reviewed. The history of 

the strain smoothing technique, the formulation of the edge-based strain smoothing technique in 2D solid 

mechanics problems and the result of a simple benchmark problem are covered [10-15]. 

 

In chapter 5, the MITC3+S shell finite element is developed and there are two versions. The first version 

of the MITC3+S shell finite element has contributed to the successful application of the edge-based strain 

smoothing technique to the continuum mechanics based MITC3+ shell finite element. The first version has 

successfully improved the membrane performance of the MITC3+ shell finite element. The second version of the 

MITC3+S shell finite element alleviates the problem of increasing computation time in the first version and has 

even better membrane performance than the first version.    
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Chapter 2.  Finite element analysis of shell structures 

 

In this chapter, the fundamentals related to the finite element analysis of shell structures are reviewed. 

The asymptotic behavior of shell structures, the locking behavior and its alleviation, the ideal shell finite element 

and the basic numerical tests are covered. 

 

 

2.1.  The asymptotic behavior of shell structures 

 

Three load-carrying mechanisms of the shell structures are bending, membrane and shearing actions. 

Therefore, shell structures under loading have three corresponding deformation energies which are respectively 

called bending, membrane and shear strain energy. Because the thickness of a shell structure is thin, the shear 

strain energy can be negligible. Consequentially, the strain energy of a shell structure mainly consists of two parts: 

membrane and bending strain energy.  

 

As the thickness of a shell structure gets thinner, the shell structure becomes more sensitive and its 

behavior eventually converges to a specific limit state. This is called the asymptotic behaviors of the shell 

structures and categorized into membrane-dominated behavior, bending-dominated behavior and mixed behavior 

depending on shell geometry, boundary condition and loading condition.  

 

It is essential to understand the asymptotic behaviors of the shell structures to accurately interpret the 

response of the shell structures and to develop an ideal shell finite element. The ideal shell finite element should 

have uniform optimal convergence regardless of these three asymptotic behaviors. The fundamental asymptotic 

theory is explained in the following paragraph [1].   

 

The linear Naghdi shell model or Koiter shell model is considered. The general variational form of them 

is to find 
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U  such that )(),(),(3 VFVUAVUA mb
   , V , (2.1)

where   is the thickness parameter Lt /  ( t  is the thickness and L  is the characteristic length of the shell 

structure, the bilinear form bA  is the scaled bending energy, the bilinear form mA  is, respectively, the scaled 

membrane energy for the Koiter shell model and the scaled membrane and shear energies for the Naghdi shell 

model, U  is the unknown displacement field, V  is the test function,   is the proper Sobolev space, and F  

is the external loading. 

 

The scaled loading is introduced to define the asymptotic behavior as   approaches zero: 

)()( VGVF   , (2.2)

in which   is the load-scaling factor proven that 31   .  

 

A space 0  is defined which is the subspace of the pure bending displacements: 

}0),({0  VVAV m . (2.3)

All displacements in 0  correspond to zero membrane and shear energies. If 0  is an empty set, it means that 

the pure bending is inhibited. On the other hand, if the shell allows non-zero pure bending displacements, it means 

that the pure bending is non-inhibited. Whether the pure bending is inhibited or not dominantly determines the 

asymptotic behavior of shells. 

 

If the pure bending is non-inhibited, the shell can have bending-dominated behavior. In the bending-

dominated case, the membrane energy term of Equation (2.1) asymptotically vanishes with 3 . In conclusion, 

the general form of the bending-dominated limit problem is to find 

0
0 U  such that )(),( 0 VGVUAb  , 0V . (2.4)

This limit problem operates only when the loading activates the pure bending displacements. If the loading does 

not activate the pure bending displacements, the subspace is as follows: 

0)( VG , 0V , (2.5)

then the solution of the shell problem does not converge to the limit solution of the bending-dominated case, and 



5 

 

instead converges to the limit solutions of the other asymptotic cases, but very unstable.  

 

If the pure bending is inhibited, the shell can have membrane-dominated behavior. In the membrane-

dominated case, the bending energy tern of Equation (2.1) asymptotically vanishes with 1 . In conclusion, the 

general form of the membrane-dominated limit problem is to find 

m
mU   such that )(),( VGVUA m

m  , mV  . (2.6)

This limit problem operates only when the loading G  is in the dual space of m . The condition mG   is 

directly equivalent to  

),()( VVACVG m , mV  , (2.7)

with C  a constant. Equation (2.7) ensures that the loading can be resisted by membrane stresses only, and thus 

the condition mG    is said to correspond to an admissible loading. If the loading is a non-admissible 

membrane loading, the solution of the shell problem does not converge to the limit solution of the membrane-

dominated case, and instead converges to the limit solutions of a mixed case.  

 

 

2.2.  Locking behavior and its alleviation 

 

In finite element analyses, a convergence rate to the analytical solution severely decreases when the 

thickness becomes thin during bending-dominated behavior and mixed behavior. This is called locking. The 

locking occurs because a finite element discretization cannot accurately describe the pure bending displacement 

field of shells. This phenomenon is usually related to the low order interpolation functions. The types of the 

locking occurring in shell analysis include membrane locking and transverse shear locking. The membrane locking 

occurs when there is a curvature on the geometry and on the other hand, the transverse shear locking occurs 

irrespective of the curvature on the geometry. In the case of the 3-node triangular shell finite elements handled in 

this study, since these have a flat shape, only the transverse shear locking is considered.  

 

Many methods to alleviate the transverse shear locking have been proposed. First, the RI (Reduced 
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Integration) and SRI (Selective Reduced Integration) methods were proposed by Zienkiewicz et al. [16]. The RI 

equally reduces the order of Gauss integration when constructing the stiffness matrix for all the strains. The SRI 

(Selective Reduced Integration) only reduces the order of Gauss integration when constructing the stiffness matrix 

for the specific strains that locking occurs. These are very simple to apply, but have a disadvantage of creating 

spurious modes (hour glass modes). Therefore, stabilization technique should be used together to prevent.  

 

Another method is the DSG (Discrete Shear Gap) method proposed by Bischoff et al. [17,18]. It 

compares the actual nodal displacements and the displacements corresponding to a pure bending mode. The 

difference between two displacements is called the shear gap. The shear strains are determined from the 

interpolated shear gap. This method is applicable to triangles or quadrilateral shell finite elements in the same way. 

 

A third method is the MITC (Mixed Interpolation of Tensorial Components) method proposed by Bathe, 

et al. It interpolates displacements and strains separately and connects these interpolations at tying points. This 

method was first used to develop quadrilateral shell finite elements (MITC4, MITC8, MITC9 and MITC16) and 

later, used to develop triangular shell finite elements (MITC3 and MITC6) [3-5]. 

 

 In this study, the 3-node triangular shell finite elements are studied. Therefore, the 3-node triangular 

shell finite element with the DSG method (DSG3) and the 3-node triangular shell finite element with the MITC 

method (MITC3) need to be examined. Both elements are commonly used and have a quite reasonable 

convergence behavior. However, while the MITC3 shell finite element gives a stable result and shows an isotropic 

behavior, the DSG3 shell finite element contains a spurious zero energy mode and shows anisotropic behavior. 

Also, the DSG3 shell finite element can be only used for flat shell elements [17-19].  

 

For this reason, the MITC method is used to alleviate the locking in this paper. Even recently, the 

MITC3+ shell finite element has been developed which further develops the MITC3 shell finite element. The 

MITC3+ shell finite element shows an excellent convergence behavior in bending dominated problems [6-8].  
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2.3.  Ideal shell finite element 

 

An ideal shell finite element should satisfy ellipticity, consistency, inf-sup and isotropy condition to 

have uniform optimal convergence. Followings are detailed description of each condition [2,5]. 

 

 Ellipticity condition indicates that the problem can be solved with the given finite element discretization. 

This means physically that the shell finite element has no spurious zero energy mode and only has the six 

zero energy mode corresponding to six rigid body modes.  

 Consistency condition indicates that the finite element solution should converge to the solution of the 

mathematical model as the element size h  goes to zero. 

 Inf-sup condition indicates that the finite element solution should have uniform optimal convergence in 

bending dominated problems regardless of the shell thickness, that is, the finite element does not accompany 

locking phenomenon.  

 Isotropy condition indicates that the element stiffness matrices should not depend on the sequence of node 

numbering.  

 

 

2.4.  Basic numerical tests and convergence studies 

 

Some basic numerical tests are prepared: the isotropy test, the patch tests and the zero energy mode test. 

These basic numerical tests are requirements to be an ideal shell element, i.e. to satisfy the conditions mentioned 

in Chapter 2.3. Once a shell finite element is confirmed to pass the basic numerical tests, the convergence studies 

are next performed. Through the convergence studies, we can confirm whether the consistency and inf-sup 

conditions are satisfied. The benchmark problems to be used in the convergence studies should be representative 

of all the asymptotic behaviors and various mesh patterns should be considered. The basic numerical tests are 

described in the following paragraph [2,5].   

 

For the isotropy test, different node numbering sequences are given as input. Shell finite elements should 
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give the identical results regardless of the node numbering sequences. For the patch tests, the minimum number 

of degrees of freedom is constrained to prevent rigid body motions and appropriate loadings are applied to create 

a constant stress condition. The constant stress must be calculated at all points on the mesh to pass the patch test. 

Figure 2.1 shows the mesh for all patch tests and the boundary and loading conditions for each patch test. For the 

zero energy mode test, the number of zero eigenvalues of the stiffness matrix of a single unsupported element are 

counted. The single shell finite element should pose exactly six zero eigenvalues corresponding to the six physical 

rigid body modes. 
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Figure 2.1 Mesh for all patch tests and the boundary and loading conditions for each patch test 

)0,0( )0,10(

)2,2(
)3,8(

)7,4(
)7,8(

)10,0( )10,10(

x

y

spatch testforMesh

xF

xF

1patch testMembrane

yF

xF

xF

yF

xF

2patch testMembrane

yM

yM

patch testBending

zF

zF

patch testShearing



10 

 

Chapter 3.  3-node triangular continuum mechanics based shell finite 

elements 

 

In this chapter, the formulations of the DISP3 shell finite element, the MITC3 shell finite element and 

the MITC3+ shell finite element are reviewed. 

 

 

3.1.  Formulation of the DISP3 shell finite element  

 

The geometry of the 3-node triangular displacement-based shell finite element is interpolated by [5] 

 
 


3

1

3

1

),(
2

),(),,(
i i

i
niiii Vsrha

t
xsrhtsrx

  with srh  11 , rh 2 , sh 3 ,  (3.1)

where ih  is the 2D interpolation function of the standard isoparametric procedure corresponding to node i , ix


 

is the position vector at node i   in the global Cartesian coordinate system, and ia   and i
nV


  denote the shell 

thickness and the director vector at the node i , respectively, see Figure 3.1. Note that the vector i
nV


 does not 

have to be normal to the shell midsurface in this description.   

 

The corresponding displacement interpolation of the element is given by  

  
 


3

1

3

1
12),(

2
),(),,(

i i

i
i

i
iiiii VVsrha

t
usrhtsru

  , (3.2)

where iu


 is the nodal displacement vector in the global Cartesian coordinate system, iV1


 and iV2


 are unit vectors 

orthogonal to i
nV


 and to each other, and i  and i  are the rotations of the director vector i
nV


 about iV1


 and iV2


 

at node i . 

 

The linear part of the displacement-based covariant strains is calculated by  
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)(
2

1
,, ijjiij uguge

 , (3.3)

where   

i
i r

x
g







 , 
i

i r

u
u








,

 with rr 1 , sr 2 , tr 3 . 

 

The 3-node triangular displacement-based shell finite element passes all basic numerical tests: zero 

energy mode test, isotropic test and patch tests. However, this shell finite element strongly has the shear locking 

problem and therefore, it exhibits very extremely stiff behavior in bending-dominated problems. 

 

 

Figure 3.1. A 3-node triangular displacement-based shell finite element 

 

` 

3.2.  Formulation of the MITC3 shell finite element  

 

The MITC3 shell finite element has the same geometry and displacement interpolations as the DISP3 

shell finite element. Instead, the process of constructing assumed covariant transverse shear strain field using the 

MITC technique is added. It assumes constant covariant transverse shear strains along the edges to construct the 

assumed covariant transverse shear strain field. The assumed covariant transverse shear strain field and the tying 
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points of the MITC3 shell finite element are given by [5]  

csee rt
MITC
rt  )1(3 ,  

cree st
MITC
st  )2(3 , 

(3.4)

where )3()3()1()2(
rtstrtst eeeec  , see Figure 3.2 and 3.3.  

 

The MITC3 shell finite element passes all basic numerical tests: zero energy mode test, isotropic test 

and patch test. In addition, the convergence behavior is also improved to a quite reasonable level. However, there 

are still some shear locking problems in bending-dominated problems. 

 

 

Figure 3.2 Constant transverse shear strain along its edge 

 

Figure 3.3 Tying positions for the assumed transverse shear strain field 
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3.3.  Formulation of the MITC3+ shell finite element 

 

The MITC3+ shell finite element has bubble node that only has the rotation degrees of freedom on its 

centroid and also has corresponding cubic bubble function in the geometry and displacement interpolations.    

 

The geometry of the MITC3+ shell finite element is interpolated by [6-8] 

 
 


3

1

4

1

),(
2

),(),,(
i i

i
niiii Vsrfa

t
xsrhtsrx

  with  3
3

2
2

1
1

4
4 3

1
nnnn VaVaVaVa


 , (3.5)

where ih  is the 2D interpolation function of the standard isoparametric procedure corresponding to node i , if  

is the 2D interpolation function with the cubic bubble function: 

411 3

1
fhf  , 

422 3

1
fhf  , 

433 3

1
fhf  , )1(274 srrsf  . (3.6)

 

The corresponding displacement interpolation of the element is given by  
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i
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t
usrhtsru

  , (3.7)

where 4  and 4  are the rotation degrees of freedom at the bubble node, see Figure 3.4. 

 

 

Figure 3.4 Geometry of the MITC3+ shell finite element with an additional bubble node 
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The assumed covariant transverse shear strain field and the tying points of the MITC3+ shell finite 

element are given by  

  )13(ˆ
3

1

3

1

2

1

3

2
ˆˆ )()()()(.3 






  sceeeeeee C

st
C

rt
B

st
B

rt
linear
rt

const
rt

MITC
rt

, 

  )31(ˆ
3

1

3

1

2

1

3

2
ˆˆ )()()()(.3 rceeeeeee C

st
C

rt
A

rt
A

st
linear
st

const
st

MITC
st 






  , 

(3.8)

where )()()()(ˆ E
st

F
st

D
rt

F
rt eeeec   and the 6 tying points (A)-(F) with the tying distance d  in Figure 3.5, 3.6, 

3.7 and Table 3.1. The value of d  is suggested to be 1/10000.  

 

The MITC3+ shell finite element passes the basic test: zero energy mode, isotropy and patch tests. In 

addition, the MITC3+ shell finite element shows an excellent convergence behavior in bending-dominated 

problems. 

 

Table 3.1 Tying positions for the assumed transverse shear strain field for the MITC3+ shell finite element 

  Tying points r s 

Figure 3.6 

(A)  1/6  2/3 

(B)  2/3  1/6 

(C)  1/6  1/6 

Figure 3.7 

(D) 1/3+d 1/3-2d 

(E) 1/3-2d 1/3+d 

(F) 1/3+d 1/3+d 
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Figure 3.5 Transverse shear strain te1 , te2  and te3  

 

Figure 3.6 Tying positions (A)-(C) for the assumed transverse shear strain field of the MITC3+ shell 

finite element 

 

Figure 3.7 Tying positions (D)-(F) for the assumed transverse shear strain field of the MITC3+ shell finite 
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Chapter 4.  Strain smoothing technique 

 

Strain smoothing technique is a particular class of numerical methods for the simulation of physical 

phenomenon. The strain smoothing is achieved by modifying (or smoothening) the compatible strain field of the 

finite elements. This work can be performed within the elements or beyond the elements. In this study, the strain 

smoothing technique is used to improve the membrane performance of the MITC3+ shell finite element. Therefore, 

in this chapter, the strain smoothing technique is reviewed first. The history of the strain smoothing technique, the 

formulation of the edge-based strain smoothing technique in 2D solid mechanics problems and the result of a 

simple benchmark problem are covered.  

 

 

4.1.  History of the strain smoothing technique  

 

The strain smoothing technique was first proposed by Chen et al. to eliminate spatial instability in nodal 

integration for Galerkin mesh-free methods [9] and later has expanded to the FEM. For the finite element analyses 

in 2D solid mechanics problems, the edge-based strain smoothing technique and the node-based strain smoothing 

technique were proposed by Liu et al [10,11]. In the case of the node-based strain smoothing technique, the strain 

smoothing domain is created by connecting sequentially the mid-edge points to the centroids of the surrounding 

elements. The node-based strain smoothing gives upper bound in the strain energy of the solution and is immune 

from the volumetric locking [10]. In the case of the edge-based strain smoothing technique, the strain smoothing 

domain is created by connecting sequentially the two end points of the edge to the two centroids of the two 

surrounding elements. The edge-based strain smoothing using triangular finite elements give more stable and 

accurate solution than the conventional FEM and doesn’t cause the increase in degrees of freedom [11]. The strain 

smoothing technique has been extended to plate and shell elements. Most of them used with the DSG method [12-

14]. The strain smoothing technique has been also applied to develop effective schemes for the finite element 

analyses in 3D solid mechanics problems [16,17].  
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4.2.  Formulation of the edge-based strain smoothing technique in 2D solid 

mechanics problems 

 

In this study, the concept of the edge-based strain smoothing technique is used among the various strain 

smoothing techniques. The edge-based strain smoothing technique is more efficient and gives more successful 

results when used for the 3-node triangular finite elements than other strain smoothing techniques. The 

formulation of the edge-based strain smoothing technique in 2D solid mechanics problems is reviewed below.  

 

The formulation of the edge-based strain smoothing technique basically starts from that of the FEM. 

First, the compatible strain fields have to be obtained through the FEM procedures [2], then smoothed strain fields 

are constructed with the edge-based strain smoothing technique [11].  

 

The basis of the displacement-based finite element solution is the principle of virtual work. This 

principle states that the equilibrium of the body requires that the total inner virtual work is equal to the total 

external virtual work for any compatible small virtual displacements imposed on the body in its equilibrium 

condition: 


 

i

i
C

iSS

V

B

V

RudSfudVfudV
fS

ff


 , (4.1)

where u
  are the virtual displacements and 


 are the corresponding virtual strains. 

 

In the finite element analyses, a body is approximated as an assemblage of discrete finite elements 

interconnected at nodal points on the boundaries of elements. The displacements within each element are assumed 

to be a function of the displacements at the nn  nodal points:  





nn

i
iiuu

1


Η , (4.2)

where iu


 is the nodal displacement vector and 









i

i
i h

h

0

0
Η  is the displacement interpolation matrix. 
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Then the corresponding strains within each element are obtained by using the assumption on the 

displacements in Equation (4.1): 





nn

i
iiu

1


Β , (4.3)

where 



















xiyi

yi

xi

i

hh

h

h

,,

,

,

0

0

Β  is the strain-displacement matrix. The rows of the iΒ  are obtained by appropriately 

differentiating and combining the rows of the iΗ . 

 

To construct the smoothed strain fields, the compatible strains obtained from the conventional FEM are 

smoothed over local strain smoothing domains. The local strain smoothing domains are constructed based on the 

edges of elements.  

 

The smoothed strains can be obtained by  

  
k

xx kk d)()(~   with 








)(

)()(

,0

,/1
)(

k

kk

k
x

xA
x , (4.4)

where )(k  is the smoothing domain associated with the th edge and )(kA  is the area of the )(k . 

 

The area of the smoothing domain associated with the k th edge )(kA  is calculated by 







)(

)(

1

)()(

3

1
d

k

k

ne

j

j
e

k AA , (4.5)

where )( j
eA  is the area of the j th element around the k th edge and )(kne  is the number of elements around 

the k th edge, i.e. 1)( kne  for the boundary edges and 2)( kne  for the inner edges. 

 

The matrix form of the smoothed strains on the domain )(k  can be written by 





)(

~~
knni

iik u


Β , 
(4.6)

where iΒ
~

  is the smoothed strain-displacement matrix, iu


  is the nodal displacement vector and )(knn   is the 

k
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total number of nodes in the smoothing domain )(k , i.e. 3)( knn  for the boundary edges and 4)( knn  for 

the inner edges. 

 

The smoothed strain-displacement matrix iΒ
~

 is obtained numerically by 

j

ne

j

j
eki

k

A
A

BΒ 



)(

1

)(
)( 3

11~ , (4.7)

where jΒ  is the strain-displacement matrix of the j th element around the k th edge.  

 

The strain fields of 3-node triangular finite elements changes from Figure 4.1 to Figure 4.2 when the 

edge-based strain smoothing technique is applied. Through this chapter, we have confirmed that the formulation 

of the edge-based strain smoothing technique for the 3-node triangular finite elements is very clear and easy to 

implement. 

 

 

Figure 4.1 Membrane strain field of the original 3-node triangular finite element 

Node

elementeachthe

ofCentroid
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Figure 4.2 Membrane strain field of the edge-based strain smoothed 3-node triangular finite element 

 

 

4.3.  Basic numerical tests 

 

 In this chapter, the three basic numerical tests are considered: the isotropy test, the patch tests and the 

zero energy mode test. The details about the basic numerical tests are given in Chapter 2.4 and Figure 2.1. 

 

The isotropy test is performed. The smoothed 3-node triangular finite element gives the identical results 

regardless of the node numbering sequences. The membrane patch test is performed. The smoothed 3-node 

triangular finite element gives a constant stress at all points on the mesh. The zero energy mode test is performed. 

The smoothed 3-node triangular finite element poses exactly three zero eigenvalues corresponding to the three 

physical rigid body modes. In conclusion, the smoothed 3-node triangular finite element passes all the basic 

numerical tests. 

 

 

4.4.  Convergence studies 

 

In this chapter, a simple convergence study is performed to demonstrate the effectiveness of the edge-

based strain smoothing technique in 2D solid mechanics problems. 

Node

elementeachthe

ofCentroid
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The numerical example, ‘a cantilever subjected to a parabolic traction at the free end’, is considered 

[11]. This cantilever has a length of L , a height of D  and a unit thickness so that plane stress condition is valid, 

see Figure 4.3. 

 

 

Figure 4.3 A cantilever subjected to a parabolic traction at the free end 

 

The analytical solution of this problem is given by [22] 


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(4.8)

where I  is the moment of inertia. 

 

The stresses corresponding to the displacements are 

I

yxLP
yxxx

)(
),(


 , 0),( yxyy , 








 2

2

42
),( y

D

I

P
yxxy . (4.9)

 

The loading on the right end ( Lx   ) uses the exact distributed stresses from Equation (4.9). The 

properties are as follows: Pa100.3 7E , 3.0 , m48L , m12D  and N1000P .   

 

Figure 4.4 gives the y  direction displacements, v , at the midline ( 0x ) of the conventional 2D 3-

node triangular finite element, the edge-based strain smoothed 2D 3-node triangular finite element and the 

x

y

D

L

p
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analytical solution. The edge-based strain smoothed 2D 3-node triangular finite element gives a result almost 

identical to the analytical solution.  

 

 

Figure 4.4 Distribution of displacement v  along ( x , 0 ) 
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Chapter 5.  MITC3+S shell finite element 

 

In chapter 5, the MITC3+S shell finite element is developed and there are two versions. The first version 

of the MITC3+S shell finite element is explained in Chapter 5.1. The first version has contributed to the successful 

application of the edge-based strain smoothing technique to the continuum mechanics based MITC3+ shell finite 

element. The first version has successfully improved the membrane performance of the MITC3+ shell finite 

element. The second version of the MITC3+S shell finite element is explained in Chapter 5.2. The second version 

alleviates the problem of increasing computation time in the first version and has even better membrane 

performance than the first version.    

 

 

5.1.  Development of the first version of the MITC3+S shell finite element 

 

In the formulation of the MITC3+S shell finite element, the mid-surface of the element is subdivided 

into three 3-node triangular domains using the three edges and the centroid of the element. This divided domains 

are called cells and the membrane strain fields are newly constructed based on the cells. In 2D solid mechanics 

problems, it can be said that the strain fields are reconstructed based on the edges, but it is more accurate that the 

strain fields are reconstructed based on the cells in shell problems because shell elements are not always present 

in the same plane. Followings are the formulation of the MITC3+S shell finite element. 

 

The geometry of the MITC3+ shell finite element is interpolated by [6-8] 
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nnnn VaVaVaVa


 , (5.1)

where ih  is the 2D interpolation function of the standard isoparametric procedure corresponding to node i , if  

is the 2D interpolation function with the cubic bubble function: 

411 3

1
fhf  , 422 3

1
fhf  , 433 3

1
fhf  , )1(274 srrsf  . (5.2)
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The corresponding displacement interpolation of the element is given by  

  
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where 4  and 4  are the rotation degrees of freedom at the bubble node, see Figure 3.4. 

 

The linear part of the displacement-based covariant strains is calculated by  

)(
2

1
,, ijjiij uguge

 , (5.4)

where 

i
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u








,

 with rr 1 , sr 2 , tr 3 . 

 

 The MITC3+ shell finite element solves the locking phenomenon very successfully and thus has an 

outstanding convergence behavior in bending-dominated problems. This is achieved by properly assuming the 

covariant transverse shear strains using the MITC method. Therefore, in this study, the assumed covariant 

transverse shear strains of the MITC3+ shell finite element is employed and only the covariant membrane strains 

are smoothed using the strain smoothing technique.  

 

 The covariant membrane strains can be decomposed by [23] 
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with 
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(5.9)

in which planein
ije   is the covariant in-plane strains, m

ije  is the covariant membrane strains and the other terms are 

the covariant bending strains. The covariant membrane strains have a constant value in each element. Since only 

the strain smoothing is applied to the covariant membrane strains, only the translation degrees of freedom is 

considered during the strain smoothing procedures.  

  

In the case of shells, two neighboring elements are not always present in the same plane, which means 

the two neighboring elements lie on different coordinate systems. Therefore, to enable the strain smoothing 

between the two neighboring elements lying on different planes, a new local Cartesian coordinate system is 

required. Two types of the new local Cartesian coordinate systems are tested. The first type has already been used 

to apply the strain smoothing technique to flat shell elements [14,15]. 

 

 A common local Cartesian coordinate system is defined in the case of the first type. The base vectors 

k
iL
~

 are obtained by  
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kkk LLL 321

~~~ 
 , (5.11)

where the right superscript k  denotes the k th cell of the element, kL2

~
 is the unit vector tangential to the k th 

edge of the element, n


 is the vector normal to the element and .ADJn


 is the vector normal to the adjacent element, 

see Figure 5.1. 

 

Two different local Cartesian coordinate systems are defined in the case of the second type. The base 

vectors k
iL
~

 and k
i

ADJ L
~.  are obtained by 
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kkk LLL 321

~~~ 
 ,  (5.12)
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 , (5.13)

where the right superscript k  denotes the k th cell of the element or the adjacent element, kL2

~
 and kADJL2

.~


 are 

the unit vectors tangential to the k th edge of the element and kL3

~
 and kADJ L3

.~


 are the unit vectors normal to the 

element and the adjacent element, respectively, see Figure 5.2. 

 

 

Figure 5.1 A common local Cartesian coordinate system for strain smoothing 

 

 

Figure 5.2 Two different local Cartesian coordinate systems for strain smoothing 
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When the covariant membrane strains of the element and the adjacent element are transformed to the 

strains for the common local Cartesian coordinate system, transverse shear strains can be generated. In this case, 

the strain smoothing should be applied to all the strain components including the transverse shear strains. When 

the covariant membrane strains of the element and the adjacent element are transformed to the strains for the two 

different local Cartesian coordinate systems, respectively, transverse shear strains are not generated. In this case, 

the strain smoothing is applied only to the membrane strain components. Both types give almost the same results, 

but the second type is advantageous in computation time. Therefore, the second type is used in this study. 

 

The local strains of the element mn   and the local strains of the adjacent element mn
ADJ .   that 

transforms the covariant membrane strains of the element and the adjacent element for the two different local 

Cartesian coordinate systems, respectively, are obtained by  
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m
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 , (5.15)

in which m
ije  are the covariant membrane strains of the element and m

ij
ADJ e.  are the covariant membrane strains 

of the adjacent element.  

 

The local strains of the element and the adjacent element can be written in the following matrix form: 

)(e
mnmn u


Β , (5.16)

)(.. eADJ
mn

ADJ
mn

ADJ u


Β , (5.17)

in which mnΒ  is the strain-displacement matrix corresponding to the local strains of the element, mn
ADJ Β.  is 

the strain-displacement matrix corresponding to the local strains of the adjacent element, )(eu


  is the nodal 

displacement vector of the element and )(. eADJ u


 is the nodal displacement vector of the adjacent element. 

  

However, the above matrix representation is not suitable to apply the strain smoothing technique. Instead, 

it can be expressed as 
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)(e
iii u


Β , (5.18)

)(... e
i

ADJ
i

ADJ
i

ADJ u


Β , (5.19)

in which i   is the local strains corresponding to the i  th node of the element, i
ADJ .   is the local strains 

corresponding to the i th node of the adjacent element, iΒ  is the strain-displacement matrix corresponding to 

the i th node of the element, i
ADJ Β.  is the strain-displacement matrix corresponding to the i th node of the 

adjacent element, )(e
iu


  is the i  th nodal displacement vector of the element and )(. e
i

ADJ u


  is the i  th nodal 

displacement vector of the adjacent element. 

 

The smoothed local strains can be obtained by  

  
k

xx kk d)()(~   with 



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
)(

)()(

,0

,/1
)(

k

kk

k
x

xA
x , (5.20)

where )(k  is the smoothing domain associated with the th edge and )(kA  is the area of the )(k . 

 

The area of the smoothing domain associated with the k th edge is calculated by 







)(

)(

1

)()(

3

1
d

k

k

ne

j

j
e

k AA , (5.21)

where )( j
eA  is the area of the j th element around the k th edge and )(kne  is the number of elements around 

the k th edge, i.e. 1)( kne  for the boundary edges and 2)( kne  for the inner edges. 

 

The matrix form of the smoothed strains on the domain )(k  can be written by 





)(

~~
knni

iik u


Β , 
(5.22)

where iΒ
~

 is the smoothed strain-displacement matrix, iu


 is the nodal displacement vector and )(knn  is the 

total number of nodes in the smoothing domain )(k , i.e. 3)( knn  for the boundary edges and 4)( knn  for 

the inner edges. 

 

k
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The smoothed strain-displacement matrix iΒ
~

 is obtained numerically by 

j

ne

j

j
eki

k

A
A

BΒ 



)(

1

)(
)( 3

11~ , (5.23)

where jΒ  is the strain-displacement matrix of the j th element around the k th edge, i.e. 1B  is the strain-

displacement matrix of the element and 2B  is the strain-displacement matrix of the adjacent element. 

  

After the strain smoothing procedures, the smoothed local strains are transformed to the smoothed 

covariant membrane strains for the corresponding contravariant base vectors: 

)
~

)(
~

()~()~( k
nj

k
mimnkij

m
k LgLge


  , (5.24)

where k
~  is the smoothed local strains on the domain )(k , m

ke~  is the smoothed covariant membrane strains 

which transforms the k
~  for the corresponding contravariant coordinate system.  

 

In conclusion, the smoothed covariant membrane strains replace the original covariant membrane strains 

and the assumed covariant transverse shear strains of the MITC3+ shell finite element replace the original 

covariant transverse shear strains. 

 

Then, the new covariant strains are transformed for the Cartesian shell-aligned coordinate system for 

the numerical integration of the stiffness matrix. In the case of the MITC3+ shell finite element, the numerical 

integration of the stiffness matrix is performed based on an element:  

  

 

 
)(

detˆ
2

1

1 1

)(

e

p t

V

N

i

N

j
ji

e wwdV JBCBBCBK , (5.25)

where )(eV  is the volume of the element, tN  is the number of Gauss points for the thickness direction, pN  is 

the number of Gauss points for the surface, iw  is the i th Gauss weights for the thickness direction, jŵ  is the 

j  th Gauss weights for the surface, C   is the material matrix, Jdet   is the determinant of the Jacobian 

transforming global to natural coordinate system and B  is the strain-displacement matrix of the local strains that 

transforms the covariant strains for the Cartesian shell-aligned coordinate system. The MITC3+ shell finite 
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element requires 7pN  due to the cubic bubble function and 2tN , see Figure 5.3. 

 

However, after the strain smoothing procedures, the numerical integration of the stiffness matrix is 

performed based on a cell:  

  

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kk
e
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e
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wwdV
1 1 11

)( det
3

1~~

2

1~~

)(

JBCBBCBK , (5.26)

where nc  is the number of the cells in an element, i.e. 3nc  in the case of triangular shell finite elements, 

)(e
kV  is the volume of the k th cell, kB

~
 is the strain-displacement matrix of the local strains that transforms the 

new covariant strains of the k th cell for the Cartesian shell-aligned coordinate system.  

 

The first version of the MITC3+S shell finite element contributed to the successful application of the 

edge-based strain smoothing technique to the continuum mechanics based MITC3+ shell finite element. The first 

version has successfully improved the membrane performance of the MITC3+ shell finite element.  

 

 

Figure 5.3 The membrane strain fields of the MITC3+ shell finite element and the spatial distribution of 7 

Gauss points that the MITC3+ shell finite element uses 

pointGauss

r

s

1

2.0

4.0

6.0

8.0

0

0

2.0 4.0 6.0 8.0 1



31 

 

 

Figure 5.4 The membrane strain fields of the MITC3+S shell finite element (ver. 1) and the spatial 

distribution of the 21 Gauss points that the MITC3+S shell finite element (ver. 1) uses 

 

 

5.2.  Development of the second version of the MITC3+S shell finite element 

using an enhanced edge-based strain smoothing technique 

 

The first version of the MITC3+S shell finite element doesn’t increase the number of degrees of freedom, 

but instead increases the number of the integration points by 3 times, see Figure 5.4. This is not fatal, but it 

certainly increases the computation time. Therefore, the second version of the MITC3+S shell finite element has 

been developed which alleviates the problem of increasing computation time in the first version and has even 

better membrane performance than the first version. An enhanced edge-based strain smoothing technique has been 

developed and utilized in the process of the study.  

 

Figure 5.5 shows the membrane strain fields of the first type of the MITC3+S shell finite element and 

the spatial distribution of the 7 Gauss points that the MITC3+ shell finite element uses. Fundamentally the 7 Gauss 
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points can’t be used for the first type of the MITC3+S shell finite element because of the Gauss points located at 

the boundaries between the cells.  

 

 

Figure 5.5 The membrane strain fields of the MITC3+S shell finite element (ver. 1) and the spatial 

distribution of the 7 Gauss points that the MITC3+ shell finite element uses 

 

The enhanced edge-based strain smoothing technique uses these 3 Gauss points located at the 

boundaries between the cells. Specifically, one more strain smoothing is performed at the 3 Gauss points located 

at the boundaries, i.e. for the Gauss points located at the boundaries between two cells, the averaged value of the 

two neighboring cells’ once smoothed covariant membrane strains are used, and for the Gauss points located at 

the centroid, the averaged value of the all cells’ once smoothed covariant membrane strains are used, see Figure 

5.6.  

 

 The second version of the MITC3+S shell finite element alleviates the problem of increasing 

computation time in the first version and has even better membrane performance than the first version. 
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Figure 5.6 The membrane strain fields of the MITC3+S shell finite element (ver. 2) and the spatial 

distribution of the 7 Gauss points that the MITC3+S shell finite element (ver. 2) uses 

 

 

5.3.  Basic numerical tests 

 

 In this chapter, the three basic numerical tests are considered: the isotropy test, the patch tests and the 

zero energy mode test. The details about the basic numerical tests are given in Chapter 2.4 and Figure 2.1. 

 

The isotropy test is performed. The MITC3+S shell finite element gives the identical results regardless 

of the node numbering sequences. The membrane, shearing and bending patch tests are performed. The MITC3+S 

shell finite element gives a constant stress at all points on the mesh. The zero energy mode test is performed. The 

MITC3+S shell finite element poses exactly six zero eigenvalues corresponding to the six physical rigid body 

modes. In conclusion, the smoothed 3-node triangular finite element passes all the basic numerical tests. 
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5.4.  Convergence studies 

 

In this chapter, convergence studies using appropriate benchmark problems are considered to verify the 

convergence behavior of the MITC3+S shell finite element compared to the MITC3+ shell finite element. The 

benchmark problems are listed in Table 5.1. 

 

 In the case of the Cook’s skew beam problem, the normalized displacement is used to measure the error 

in the finite element solution. In the case of the other problems, the s-norm proposed by Hiller and Bathe [24] is 

used:  

  duu T

sh   2
 with h


 , h 

 , (5.27)

where u


 is the exact solution, hu


 is the solution of the finite element discretization, 


 is the strain vectors 

and   is the stress vectors. However, since it is difficult to obtain an exact solution for most problems, an well-

converged finite element solution refu


 is used instead of the exact solution u


. To consider the various shell 

thicknesses, the relative error hE  is used: 

2

2

sref

shref

h
u

uu
E 




 .  (5.28)

The s-norm is appropriate to identify the finite elements satisfy the consistency and inf-sup conditions.  

 

 The optimal convergence behavior of the finite elements is given by [2] 

k
h ChE  , (5.29)

where h  is the element size, and C  is a constant independent on the h  and the thickness but dependent on the 

material properties and the kind of finite element used. 2k  for 3-node triangular shell finite elements.       

 

 In the convergence studies, the distorted meshes are composed as follows. In the case of the NN   

mesh, each edge is discretized at the ratio NLLLL N .....:3:2:1.....::: 321  , see Figure 5.7. 
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Figure 5.7 Distorted mesh ( 44  mesh) 

 

 

Table 5.1 List of the benchmark problems 

Benchmark problems Boundary condition Shell behavior Mesh pattern 

Cook's skew beam Left end clamped  Membrane-dominated 
Regular 

Distorted 

Square plate All edges clamped Bending-dominated 
Regular 

Distorted 

Scordelis-Lo roof shell Both ends diaphragm Mixed 
Regular 

Distorted 

Cylindrical shell 

Both ends clamped Membrane-dominated 
Regular 

Distorted 

Both ends free Bending-dominated 
Regular 

Distorted 

Hyperboloid shell 

Both ends clamped Membrane-dominated 
Regular 

Distorted 

Both ends free Bending-dominated 
Regular 

Distorted 
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5.4.1.  Cook’s skew beam problem 

 

The 2D plane stress Cook’s skew beam problem shown in Figure 5.8 is considered. The length of the 

beam is 48mL , the length of the left end is m441 H  and the length of the right end is m162 H . The 

distributed shear load N/m16/10 p   is applied on the right end and the left end is clamped. The Young’s 

modulus is 2N/m1E ; the Poisson ratio is 3/1 .  

 

The deflection at point A  is calculated using the MITC3+ shell finite element and the MITC3+S shell 

finite element obtained with NN    meshes ( N  = 2, 4, 8 and 16), see Figure 5.9. The reference solution is 

obtained using 3232   mesh of the MITC9 shell finite element.  

 

In these problem solutions, since this problem corresponds to a membrane-dominated problem, the 

convergence behaviors are further improved in the order of the MITC3+ shell finite element, the first version of 

the MITC+S shell finite element and the second version of the MITC3+S shell finite element. 

 

 

Figure 5.8 Cook’s skew beam problem 
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Figure 5.9 Normalized deflection refvv /  at point A  

 

 

5.4.2.  Square plate problem 

 

The plate bending problem shown in Figure 5.10 is considered. The length of the edges of the square 

plate is 2m2 L ; it has a uniform thickness t . The square plate is subjected to a uniform pressure 2
0 N/m1p . 

The clamped boundary conditions are imposed on all the edges. Due to symmetry, only a one-quarter model is 

considered, with the following boundary conditions: 0 yxu    along AB, 0 xyu    along AC and 

0 yxzyx uuu   along BD and CD.  

 

The reference solutions are obtained using 3232    mesh of the MITC9 shell finite element. The 

solutions using the MITC3+ shell finite element and the MITC3+S shell finite element are obtained with NN   

meshes ( N = 4, 8, 16 and 32). The element size is NLh / . The Young’s modulus is 27 N/m100.3 E ; the 

Poisson ratio is 3.0 . The range of Lt / 1/100, 1/1000 and 1/10000 is considered. 
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Figure 5.11 give the convergence curves for the regular meshes and Figure 5.12 give the convergence 

curves for the distorted meshes. In these problem solutions, since this problem corresponds to a bending-

dominated problem, the MITC+ shell finite element, the first version of the MITC3+S shell finite element and the 

second version of the MITC3+S shell finite element present similarly good convergence behaviors.  

 

    

Figure 5.10 Square plate problem  
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Figure 5.11 Convergence curves for the square plate problem with the regular meshes 
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Figure 5.12 Convergence curves for the square plate problem with the distorted meshes 
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5.4.3.  Scordelis-Lo roof shell problem 

 

The Scordelis-Lo roof shell problem shown in Figure 5.13 is considered. The shell is a segment of a 

cylinder. The length of the cylinder is m22 L ; the radius of the cylinder is m1R ; it has a uniform thickness 

t . The shell is subjected to a self-weight loading 2N/m1zf . Diaphragm boundary conditions are imposed on 

both ends. Due to symmetry, only a one-quarter model is considered with the following boundary conditions: 

0 zx uu  along AC, 0 yu  along BD and 0 xu  along CD. 

 

The reference solutions are obtained using 3232    mesh of the MITC9 shell finite element. The 

solutions using the MITC3+ shell finite element and the MITC3+S shell finite element are obtained with NN   

meshes ( N = 4, 8, 16 and 32). The element size is NLh / . The Young’s modulus is 27 N/m100.3 E ; the 

Poisson ratio is 3.0 . The range of Lt / 1/100, 1/1000 and 1/10000 is considered.  

 

Figure 5.14 give the convergence curves for the regular meshes and Figure 5.15 give the convergence 

curves for the distorted meshes. In these problem solutions, since this problem corresponds to a mixed problem, 

the convergence behaviors are further improved in the order of the MITC3+ shell finite element, the first version 

of the MITC+S shell finite element and the second version of the MITC3+S shell finite element.  

 

    

Figure 5.13 Scordelis-Lo roof shell problem  

  

x

z

L2

�

�40

y

�

�

1r

2r

A

B

C

D

x

z

L2

�

�40

y

�

�

1r

2r

A

B

C

D



41 

 

 

�MITC3

hElog hElog hElog

hlog hlog hlog

2� 5.1� 1� 5.0� 2� 5.1� 1� 5.0� 2� 5.1� 1� 5.0�

1)(ver.SMITC3 � 2)(ver.SMITC3 �

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

0

5.0�

1�

5.1�

2�

5.2�

3�

5.0

1�

2�

0

5.0�

1�

5.1�

2�

5.2�

5.0

0

5.0�

5.1�

5.2�

3�

5.0

3�

 

Figure 5.14 Convergence curves for the Scordelis-Lo roof shell problem with the regular meshes 

 

 

�MITC3

hElog hElog hElog

hlog hlog hlog

0

5.0�

1�

5.1�

2�

5.2�

3�

2� 5.1� 1� 5.0� 2� 5.1� 1� 5.0� 2� 5.1� 1� 5.0�

1)(ver.SMITC3 � 2)(ver.SMITC3 �

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

1/10000t/L

1/1000t/L

1/100t/L

�

�

�

5.0

0

5.0�

1�

5.1�

2�

5.2�

3�

5.0

0

5.0�

1�

5.1�

2�

5.2�

3�

5.0

 

Figure 5.15 Convergence curves for the Scordelis-Lo roof shell problem with the distorted meshes 
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5.4.4.  Cylindrical shell problems 

 

The cylindrical shell problems shown in Figure 5.17 are considered. The length of the cylinder is 

m22 L ; the radius of the cylinder is m1R ; it has a uniform thickness t . The shell is subjected to a varying 

pressure )2cos()( 0  pp  , see Figure 5. 16. 

 

 

Figure 5.16 Profile of the pressure 

 

This shell structure shows different asymptotic behaviors depending on the boundary conditions at its 

ends. When both ends are clamped, a membrane dominated problem is considered, whereas when both ends are 

free, a bending dominated problem is considered.  

 

Using symmetry, only a one-eighth model is considered. To have the membrane-dominated problem, 

the clamped boundary conditions are imposed: 0 xu   along BD, 0 zu   along AC, 0yu  

along AB and 0 zyx uuu   along CD. To have the bending-dominated problem, the free 

boundary conditions are imposed: 0 xu  along BD, 0 zu  along AC and 0 yu  along AB. 

 

The reference solutions are obtained using 3232    mesh of the MITC9 shell finite element. The 

solutions using the MITC3+ shell finite element and the MITC3+S shell finite element are obtained with NN   
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meshes ( N = 4, 8, 16 and 32). The element size is NLh / . The Young’s modulus is 27 N/m100.3 E ; the 

Poisson ratio is 3.0 . The range of Lt / 1/100, 1/1000 and 1/10000 is considered.  

 

Figure 5.18 give the convergence curves of the clamped cases for the regular meshes, Figure 5.19 give 

the convergence curves of the clamped cases for the distorted meshes, Figure 5.20 give the convergence curves 

of the free cases for the regular meshes and Figure 5.21 give the convergence curves of the free cases for the 

distorted meshes. In the clamped cases, since this problem corresponds to a membrane-dominated problem, the 

convergence behaviors are further improved in the order of the MITC3+ shell finite element, the first version of 

the MITC+S shell finite element and the second version of the MITC3+S shell finite element. In the free cases, 

since this problem corresponds to a bending-dominated problem, the MITC3+ shell finite element, the first version 

of the MITC3+S shell finite element and the second version of the MITC3+S shell finite element present similarly 

good convergence behaviors. 

 

    

Figure 5.17 Cylindrical shell problems 

x

y

z

R

L2

�

�

�

D

C

A

B

x

y

z

R

L2

�

�

�

D

C

A

B



44 

 

 

 

Figure 5.18 Convergence curves for the clamped cylindrical shell problem with the regular meshes 
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Figure 5.19 Convergence curves for the clamped cylindrical shell problem with the distorted meshes 
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Figure 5.20 Convergence curves for the free cylindrical shell problem with the regular meshes 
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Figure 5.21 Convergence curves for the free cylindrical shell problem with the distorted Meshes 
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5.4.5.  Hyperboloid shell problems 

 

The hyperboloid shell problem shown in Figure 5.22 are considered. The mid-surface of the shell is 

given by 

222 1 yzx  , ]1,1[y ; (5.30)

it has a uniform thickness t . The shell is subjected to a varying pressure )2cos()( 0  pp  , see Figure 5. 16. 

 

This shell structure shown different asymptotic behaviors depending on the boundary conditions at its 

end. When both ends are clamped, a membrane dominated problem is considered, whereas when both ends are 

free, a bending dominated problem is considered.  

 

Using symmetry, only a one-eighth model is considered. To have the membrane-dominated problem, 

the clamped boundary conditions are imposed: 0 xu   along BD, 0 zu   along AC, 0yu

along AB and 0 zyx uuu  along CD. To have the bending-dominated problem, the free boundary 

conditions are imposed: 0 xu  along BD, 0 zu  along AC and 0 yu  along AB. 

 

 The reference solutions are obtained using 3232    mesh of the MITC9 shell finite element. The 

solutions using the MITC3+ shell finite element and the MITC3+S shell finite element are obtained with NN   

meshes ( N = 4, 8, 16 and 32). The element size is NLh / . The Young’s modulus is 27 N/m100.3 E ; the 

Poisson ratio is 3.0 . The range of Lt / 1/100, 1/1000 and 1/10000 is considered. 

 

Figure 5.23 give the convergence curves of the clamped cases for the regular meshes, Figure 5.24 give 

the convergence curves of the clamped cases for the distorted meshes, Figure 5.25 give the convergence curves 

of the free cases for the regular meshes and Figure 5.26 give the convergence curves of the free cases for the 

distorted meshes. In the clamped cases, since this problem corresponds to a membrane-dominated problem, the 

convergence behaviors are further improved in the order of the MITC3+ shell finite element, the first version of 

the MITC+S shell finite element and the second version of the MITC3+S shell finite element. In the free cases, 
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since this problem corresponds to a bending-dominated problem, the MITC3+ shell finite element, the first version 

of the MITC3+S shell finite element and the second version of the MITC3+S shell finite element present similarly 

good convergence behaviors. 

 

    

Figure 5.22 Hyperboloid shell problems   
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Figure 5.23 Convergence curves for the clamped hyperboloid shell problem with the regular meshes 
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Figure 5.24 Convergence curves for the clamped hyperboloid shell problem with the distorted meshes 
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Figure 5.25 Convergence curves for the free hyperboloid shell problem with the regular meshes 
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Figure 5.26 Convergence curves for the free hyperboloid shell problem with the distorted meshes 
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Chapter 6.  Conclusions 

 

The purpose of this thesis is to improve the membrane performance of the MITC3+ shell finite element 

using the strain smoothing technique. The MITC3+ shell finite element has an outstanding convergence behavior 

in bending-dominated problems. However, there is no difference in membrane performance from the 3-node 

triangular displacement-based shell finite element (DISP3).  

 

In this paper, a new 3-node triangular shell finite element named MITC3+S has been developed that 

improves the membrane performance of the MITC3+ shell finite element. The first version of the MITC3+S shell 

finite element has contributed to the successful application of the edge-based strain smoothing technique to the 

continuum mechanics based MITC3+ shell finite element. The first version has successfully improved the 

membrane performance of the MITC3+ shell finite element. However, the first version increases the number of 

the integration points by 3 times even if it doesn’t increase the number of degrees of freedom.  

 

The second version of the MITC3+S shell finite element has been developed which alleviates the 

problem of increasing computation time in the first version and has even better membrane performance than the 

first version. The enhanced edge-based strain smoothing technique has been developed and utilized in the process 

of the study.  

 

The MITC3+S shell finite element presents isotropic behavior and pass the consistency, ellipticity and 

inf-sup conditions. The MITC3+S shell element shows an improved convergence behavior in various benchmark 

problems. 
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